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THE CHARACTER OF GRAVISPHERES

BRIEF

Section Page

1.

Purpose. The primary purpose here is to present some novel 1
concepts and names such as "gravisphere'" and "pyrosphere" for
identifying the characteristic regions of orbital operations.

Order of Magnitude. Initial order-of-magnitude computations 5
indicate that the Earth's Newtonian attraction force exceeds

that of the Sun by a factor of about 1,700 on the Earth's

surface, and that they become equal in magnitude at about

1/580 of the distance to the Sun, or at less than seven tenths

of the distance to the Moon,

Two-Body Coordinate Svstem. A coordinate system which is 7
attached to and rotates with the Sun and the Earth is thus

indicated as being appropriate for determining the extent of

the region in which the Earth's gravitational attraction can

be considered to be dominant.

Neutral Points. Computations of the positions of the neutral 10

points at which the sum of the Earth's and Sun's gravitational
forces and the centrifugal force vanish indicate that they occur
at a distance from the Earth equivalent to very nearly 1/100

of the distance to the Sun, or at slightly less than four times
the distance to the Moon.

Normalized Equations of Motion. The equations of motion of small 12

masses in any such two-body gravitational field can be usefully
normalized in terms of a nominal distance to such neutral points.

Potential Fields. Corresponding fields of gravitation accelera- 15

tions are illustrated with normalized plots of the distributions
of potential in the ecliptic, axial and tangential planes of such
mutually rotating bodies.

Extent of Gravigphercs. These illustrations indicate that the 22
gravisphere of the smaller of two such bodies can be considered

to extend outward to where the component of acceleration directed
toward the larger body vanishes; this occurs very nearly on a

sphere of radius equal to the distance to the neutral points.

Conclusions. Tables of the proportions of the gravispheres of 26
planets and the Moon lend substance to their visualization, and
lead to the identification of some promising units of distance
and acceleration for convenient operational use in the Earth- '
centered and Moon-centered regions of space. : ’
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THE CHARACTER OF GRAVISPHERES

Thomas C. Ensign and John C. Bellamy
Natural Resources Research Institute, University of Wyoming

1. Purpose

The work reported upon here is part of an Orbital Operations Study,
the purpose of which is to help establish more productively effective ways
of controlling orbital operations. It consists largely of investigations of
more effective ways of portraying and utilizing the large amounts of data
which are characteristic of orbital operations. Much of this work is thus
concerned with the interrelationships among the many aspects of orbital and
related operations and hence is concerned with useful functional definitiomns
of the major kinds of operations involved. It has been recognized that a
conveniently useful way of doing so is to identify them with characteristic
operational regions, and the specific purpose here is to identify and define
the general character of those regions in which orbital operations are

conducted.

For example, the operations of the Army, Navy and Air Force and
the sciences of geology, oceanograph and meteorology are organized and
identified with respect to the lithosphere, hydrosphere and atmosphere.
By analogy, the names "pyrosphere" and "gravisphere" have been suggested1
for identifying the characteristic regions of "space' or "orbital" operations

and "space science' in accordance with the following definition.

Operational Regions

The "earth, water, air and fire dependent' Biospheres or
the '"full of solid, liquid, gas or radiation"
Lithospheres, Hydrospheres, Atmospheres or Pyrospheres
of the regions of dominant gravitational influence, or Gravispheres,
of the Moons, Planets, Stars or Galaxies.
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The qualitative concepts involved in this definition are illus-
trated in Figure 1. This drawing is intended to reflect a concept of the
"sea of space" as consisting of large galactic eddies in which smaller
stellar-system eddies are embedded and sweep with them even smaller plane-
tary eddies in which moon-sized eddies are in turn embedded. The extent
of each such eddy is considered to have been made visible with swarms of
artificial satellites in nearly circular orbits around the hard-core
islands of stars, planets or moons at their centers. The circles in the
figure are thus indicative of possible orbits around the planets, and the
horizontal lines are indicative of the orbits of the planets and their
satellites around the Sun. The outermost circles are indicative of the
outermost of possible orbits around the planets, or hence are indicative
of the extent of their 'gravispheres", as they would be seen in perspective

proportion by an observer on the Moon

Names such as the "Geosphere, Lunasphere or Heliosphere' and
phrases such as '"the gravisphere of the Earth, Moon or Sun" are suggested
here as being usefully synonymous ways of identifying the "Earth~, Moon- or
Sun-centered region of the universe'. Thesé identifications reflect the
fact that gravitational influences are dominant to greater distances from
the centers of such bodies than any of their other known physical properties,
In addition, the extent and character of their gravitational fields are of
major operational and scientific importance now that artificial satellites
are being placed in permanent, gravitationally determined, orbits around

them for both applied and purely scientific purposes.

Each such "grévisphere” or "body-sphere'" can then usefully be
subdivided into its lithosphere, hydrosphere, atmosphere and whatever its
remaining "empty space' might be called. The name "pyrosphere" is suggested
for that outermost portion of gravispheres since, rather than being "empty",
it is characteristically full of the radiation from the "fires" of the Sun
and stars. Indeed, it is full of such "fiery" radiation by virtue of the
fact that it is essentially empty of the other radiation-absorbing solid,
liquid and gaseous states of the matter-energy substance. The use of the

prefix "pyro'" also consistently completes the identification of the four



basic sub-regions of gravispheres with the Greek, '"'litho, hydro, atmo and

gpyro" identifications of the four basic elements of life.

The characteristic regions of orbital operations can thus well
be identified as being the 'pyrospheres" of particular 'gravispheres" or
"body-spheres'. For example, the "full-of-fiery-radiation' connotation
of "pyrosphere" directly implies an absence of significant amounts of
matter and hence the possibility of permanent satellite orbits. It is
also directly connotative of both the major source of operational
difficulty and the major subject of scientific interest within this

"fiery'" regiom,

The purpose here is thus to define the extent and character of
gravispheres and pyrospheres in more quantitative detail. Specifically,
the purpose here is to compute and portray the distributions of the field
of gravity around celestial bodies and, thereby, to determine the extent
of the common outer limit of their pyrospheres and gravispheres. The
companion problem of establishing a quantitative definition of the location
of the inner boundary between the airless pyrospheric regions of orbital
operations and the atmospheric regions of air operations is deferred for

later work.




2. Orders of Magnitude

It is informative at the outset to illustrate the degree te which
the gravitational field is dominated by the mass of the Earth in its near
vicinity. In accordance with Newton's Law of Gravitation, the attractive
force, Fe, between a mass m at a distance R from the center of the mass
of the Earth, Mé, is expressed in terms of the universal gravitational

constant, G, by the equation

_ 2
Fe = GmHE/R (1)

The same mass m at a distance r from the center of the mass of
the Sun, Ms’ would similarly be attracted toward the Sun with a force Fs

given by

_ 2
F_ = GoM_/r )

The relative magnitude of these two forces is then indicated by

the ratio

_ 2
F /P = (M M) (/R) 3)

This ratio can be evaluated with the astronomical constants,2
M /M = 332,958
s e
and, for the equatorial radius, R = Re’ of the Earth, measured in terms of
the astronomical unit A, by

R /A

R, 8.794 seconds of arc of solar parallax

4,263 x 10-5 radians
1/23,460

Substitution of these constants in Equation 3 indicates that the Earth's
Newtonian attraction is about 1,700 times stronger than that of the Sun

on the surface of the Earth.



At first sight it might then be considered that the dominance of
the Earth's gravitational field would extend out to that radius, R, at which
the forces of Equations 1 and 2 toward the Earth and Sun become numerically

equal, or out to where the value of R satisfies the equality
u /&% =1 /- r)? )

Since the distance R is much smaller than the distance A, these two forces

become equal at about where

R = A\/Me/Ms (5)

or at about 1/580 of the distance, A, from the Earth to the Sun,

On second sight it is thus seen that some other criterion must be
used to determine the extent of gravispheres. That is, the orbit of the
Moon around the Earth is obviously dominated by the Earth's gravity. On
the other hand, the mean distance of the Moon from the Earth of 0.0026
astronomical units3 is about 1/380 of the distance from the Earth to the
Sun. Consequently the distance to the Newtonian neutral point of
Equations 4 or 5 is only about 380/580, or less than seven tenths of the

distance to the obviously Earth-centered orbit of the Moon around the Earth.



3. Two=~Body Coordinate System

As indicated by the concepts illustrated in Figure 1, however,
the Earth's gravisphere can better be considered to be a relatively small
"eddy'" of possible orbits around the Earth, all of which are embedded in and
swept along in the larger eddy of possible planet-like orbits around the
Sun. Consequently the orbital effect of the Earth's gravity is evidently
to be compared more with the spatial variations of the Sun's effects than
with their absolute magnitude. The effect of the absolute magnitude of
the Sun's gravity is primarily "to sweep" all masses in the vicinity of

the Earth around the Sun in virtually the same planet-like orbit.

A convenient and straightforward way of dealing with this problem
is thus to utilize a two-body coordinate system such as illustrated in
Figure 2. This coordinate system is defined to be attached to both the
larger 'central" body of mass Mh such as the Sun and the smaller "revolving"
body of mass M such as the Earth. It thus rotates with that vectorial
angular velocityisiwith which two such celestial bodies revolve around
their common center of mass at a mean distance a between them in accordance
with Kepler's Law that

w?ad = GQu, + M) (6)

In such a rotating coordinate system, the vectorial equation of

motion for an infinitesimal mass m such as of an artificial satellite can

be written as

ey, - L plw oy e~ &, TN
av/ar = g T gc - le‘”}(rmj = WXV T r/m \7/)

In this equation;
L SN
dv/dt stands for the acceleration, or force per unit mass,
of the mass m evaluated as the time rate of change

e
of its velocity v with respect to this coordinate system;
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stands for the Newtonian tendency for acceleration, or force
per unit mass, acting on an infinitesimal mass m at a
distance R and in the negative of its direction (or of the
unit vectOt‘ﬁ) from the smaller body of mass M;

«~ 2.4

g, =~ @M /r)r 9
likewise stands for the Newtonian acceleration of m at a
distance r and in the negative of the ¥ direction from the
larger body of mass Mh;

. ya Lo
"a}x[uz(ru)] = U.)ZB- (10)

stands for the centrifugal force per unit mass acting on
s

a mass m at a vectorial distance Ty from the center of

rotation of the coordinate system, or at the perpendicular

£ .
vectorial distance,ﬁE = pp, from its axis of rotation;

e A

- 20xV stands for the Coriolis force per unit mass acting on a
“~
mass m with a velocity v with respect to such a rotating
coordinate system; and
e
F/m stands for any other force per unit mass (such as electro-

megnetic forces, propulsion forces, drag forces, perturbing

gravitational forces of other masses, etc.) which might be

------- - e L a0 Y o o SR P, .
ting upon the infinitesimal mass m of inieresti.

C

The following form of the equation of motion of a mass m in this
two-body coordinate system is convenient for subsequent considerations, and
has been obtained by rearranging and substituting for the terms in Equation 7

in accordance with Equations 6, 8, 9 and 10,

.
& Ceo F &= oy Moo GO M,
== 4+ 2uqxy ~—=f=~-""7R- r + p (11)
dt m ) 2 3



4, Neutral Points

A start toward defining the extent of the gravisphere of the
smaller body M can then be obtained by evaluating the distance R from its
center to the two "neutral points" on the x~axis of Figure 2 at which both
sides of Equation 11 become zero. These are "neutral points'" in the sense
that it is there that the sum of the Newtonian attractions of the two
bodies and the centrifugal force on the right side of Equation 11 are

balanced,

Considering first the external neutral point on the extension

of the line through the two bodies of interest, it is seen from Figure 2
that, external to M,

M

c

P N + M
[ o4

a+R, r =a+R

«
and the unit vectorseé,ﬁg and R are all in the same direction. Consequently,
by substituting for p and r in the right side of Equation 11, the external

neutral point occurs at that distance R for which

M Mb M+ MC Hc
2t TS ° T3 |w¥m 2tR| =0
R (a + R) a c

or where the ratio of distances, R/a, satisfies the equations

M
M + —— [Mc + (M + Mc)(R/a):’ =0

®/a)2 (1 + R/a)?

M (1 +R/a)2(1 - R3/a3)
M, (1+ R/a+ R2/3a2) (12)

or (R/a)3 =

Similarly for the internal neutral point on the line between the

two bodies of interest,

HC
p= E;—:Tii a~R, r=a-R

P3N PAN £
RI

and the unit vectors r and p are in the opposite direction of This

internal neutral point thus occurs at that distance, R, for which

M Hc ) + M+ Mb Mc . -0
RZ (a - R) ‘§3 Mc + M

10



or where the ratio, R/a, satisfies the equation

2 3,3
3_ M (@Q-R/)" (1 -R/a")
(R/a)” = M (1= R/a + R2/3a?) (13)

These relationships have been expressed in this form to utilize
the fact that the ratio R/a is usually much smaller than unity, and hence
that it is convenient to define a "nominal radius, RG’ of neutral points',
by the equation

L3 T
R, = a\/ M/3M4_ (14)

For example, for the ratio Mc/M of the masses of the Sun and the
Earth2 of 332,958, the ratio RG/a is equal to the reciprocal of the cube
root of 998,874 or very nearly 1/100., Consequently the Earth's interior
and exterior neutral points can both be considered to occur at 1/100 of the
distance from the Earth to the Sun within an accuracy of about one third of
one percent. In comparison, the Moon is at about 100/380, or slightly more

than one quarter, of the distance to these neutral points.,

It is noteworthy in this regard that Equations 12, 13 and 14 can

be rigorously combined into the equations

22 @azola-¢)
G (I e +€2/3)

(15)

where
¢ =R/a (16)

Since ¢ is much less than unity, a first approximation, R', of the distance

R to either of the neutral points is then given by R' = RG. For more

precise considerations, a'gecond order approximation, R'", for a particular
neutral point can then be computed directly and easily by substituting valuves
of RG/a for € in Equation 15. In those infrequent cases in which even more
pPrecise determinations might be desired, a third order approximation, R''! can

be computed by substituting values of R"/a for ¢ in Equation 15, and so forth,

11



5. Normalized Equations of Motion

Apparently, then, this distance to the neutral points of two
mutually revolving bodies can be considered to be the extent of the smaller
body's gravisphere in the directions of the line between them, In order to
determine the extent of this gravisphere in other directions, however, it is
necessary to consider the equations of motion in more detail, As demon=-
strated below, it is conveniently useful to do so by normalizing these
equations in terms of either the characteristic distance a between the

bodies of interest or the characteristic neutral point distance RG'

[ &N
It is convenient for this purpose to combine the terms for the r
FAN
and p directions on the right side of Equation 11 in accordance with the

vector relationship implied by Figure 2 that

e M Fa)
p=T-z=- Ty & 17)
c
or hence that
< oy e G(Mc +M) GM a GM + Mcﬁu e
f==-=5 RAf—73—1~ = r= —3— z - — x (18)
R a r i a a

The bracketed term in this equation can then be simplified by expressing it

in terms of a distance
§=r-a (19)

)
measured in the r direction from the r = a sphere, as

Feor +m) o | e 3 H 3 3]

—_e_ el —m——— | A+ + )’ - a’
r—=— —5 2 M

l_ 83 T 33(3 +£) c

GM - )
o 3a2§ + 3ag + §3 +~%—(a + §)3
ada+¢e)2 L c

CM, G +e/a+ 9328, M
—5 Ot/a) G752 +22 (1 +¢t/a)

a

GM - 2,,2
= —50t/a) l_l - (¢/a) ‘}ff;,ﬁ%i%—i%‘u + £/2)

a

12



Similar normalization of the other terms of Equation 18 with respect to the

distance a then leads to the equation

”

- > -~ .
£ M__R £ EY (1 + 2¢/33) |2 z o
Ot —— = - —'————z' + 3 t - Z J r - z
oM _ /a2 M_(R/a) a) (a) (1 + &/a) a

R M_L<1+s)‘:-‘;-§-e} 20)

Since this form of the equation of motion has been normalized with
respect to the distance a between the two bodies of interest, it is primarily
useful for considering the degree to which the smaller body perturbs the
gravitational field of the larger central body. An alternate form which
is more indicative of the pertubation by the larger body of the gravitational
field in the vicinity of the smaller one can be obtained by normalizing

with respect to the neutral point distance

3 .
RG = a\ / M/3Mc (14)

and the characteristic ratio

_ 3
K RG/a =\ /}1/314c (21)
The result is that

— “ o (zR)
= = Ry ey - 52
/R’ (R/RY)

wf

13 ) (1 + 2Kt/3Rg) o o). 3]
“K +K -x|+K
\Re) T+ KE/R)? =Y l:r ¥

The extent to which the central body M perturbs the gravitational
force, JR/(R/R ) , of the smaller body M is indicated largely by the second

term in the braces of the following approximate form of Equation 22;

‘f— 1 ~> R 3 ~ PR PN
7 - 71 =+ (&) |cormiz - ey §] (23)
GM/RG (R/RG) G

13




The factors (£/R) and (z/R) correspond to directional cosines whose values
range from zero to one; the term in the bracket thus essentially defines
the direction of the perturbing force; and the factor (R/RG)3 approximately
represents the magnitude of that perturbing force with respect to a unit

of magnitude of the unperturbed gravitational force in the fﬁ direction.

For the Earth-Sun system, the relative magnitude of these solar

perturbations are of thus seen to be of the order of

o 1 part in 1 at distances R = RG from the Earth of 1/100 of the
distance to the Sun or of 235 times the radius of the Earth;

o 1 part in (380/100)3 or about 60 at the distance of the Moon of
about 1/380 of the distance to the Sun;

o 1 part in (235/6.62)3 or about 43,000 at the distance of synchronous

or one~day-period orbits; and
o 1 part in (235)3 or about 13,000,000 at the surface of the Earth.

14



6. Potential Fields

In order to obtain a clearer picture of the perturbing effects of
the central body in the vicinity of planets or moons, it is useful to
represent their gravitational forces in terms of the gradient of a single

scalar quantity called the gravitational potential.

Specifically the gravitational potential, ¢, is defined here to
be that scalar quantity whose vector gradient ?7 ® 1s equal to the negative
of both sides of Equation 11. Or, referring to the equivalent expression

in Equation 22, § is defined to be that quantity for which

= 2 — 2
V o/ (MR = - £/@GM/R,)
o (z/R.)
= ——-R—é—- (g/RG)‘?+ 3G z
®/R)

, (1 + KE/3R.),,
+K(E/RG) a+ Kg/RG)Z *

- @ - - K3<E—“? - —z-"z‘> (24)
RG RG

Consequently, as checked by vectorial differentiation,
2 2
o % 1 @R G@RY
GM/RG GM/RG R/RG 2 6

3
(E/R.) 3~ -
kK_¢ k(s Lx)LK 2 _ 2
*3 1+ KE/R, K (RG RG) > 2‘(§/RG) (Z/RG)J (25)

where o, is an arbitrarily assignable constant of integration.

The distribution of this gravitational potential in the ecliptic
(z = 0), axial (y = 0) and tangential (x = 0) planes has been mapped in
Figures 3, 4 and 5, respectively, and has been summarized in the isometric
view of Figure 6., The constant potential lines of these figures were
obtained by adding numerical values of the major terms of ¢ in accordance

with the equations

¢=¢R+¢§+¢z+¢o

15



o e
where Ra.. - 5 Eﬁ_ = - £E£§§)2 i& = fofﬁz
¢; RiRg 0y 2 0, 6
3 -
¢, =7 % and N GM/RG (26)

This addition was accomplished with the intersection technique
of graphically adding circular plots of selected constant values of @R/Q1
and straight line plots of selected constant values of ®§/¢1 and QZ/QI.
The use of straight line plots for constant values of @EAml is consistent
with the approximation implied by Equation 26 that values of K in
Equation 25 are negligibly small with respect to unity.

These figures, by virtue of the way in which they have been
normalized, thus portray the gravitational field in the vicinity of the
= 3/
smaller of any two bodies for which the characteristic ratio K M/3Mc
is negligibly small with respect to unity. The zero-reference level of
potential has been assigned as being the potential at the nominal neutral

points (where R = {g{ = R, and z = 0) by assigning the value of 3/2 to

G
the normalized constant of integration, ¢o/¢1.

The effect of neglecting the value of K with respect to unity
in Figure 3 is illustrated by the plot in Figure 7 of the gravitational
field in the Moon's ecliptic plane. This is an extreme example since,
as indicated in Table II of Section 8, the value of K = 0.16 for the
Earth-Moon system is much larger than for any of the Sun-Planet systems;
Tke 80lid lines in Figure 6 were drawn for the value of ¢§/¢1 = - (EIRG)ZIZ
gspecified by Equation 26 without, however, also approximating Earth-centered
circles of constant ¢ by straight lines as is the case in Figure 3. The
effect of neglecting the higher order terms in K of Equation 25 is
illustrated by including the first order K term in the values of

_ (elR)?

used to draw the dashed lines of Figure 7.

16
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7. Extent of Gravispheres

Figures 3 through 7 are intended to portray the way in which the
gravitational fields of a large central body and a smaller central body
interact. They are meant especially to illustrate the direction and magnitude
of the gravitational accelerations to which infinitesimal masses m would be
subjected in their interacting region., The directions of such accelerations
are everywhere normal to the constant potential surfaces from higher to lower
algebraic values of ¢ (or from lower to higher negative values of ¢). In
addition, their magnitudes are inversely proportional to the separation
between the constant potential surfaces. The directions and spacings of
the lines of constant values of ¢ in these figures thus indicate the
direction and magnitude of the components of the gravitational accelerations
in each of their respective planes. In the case of the ecliptic planes
represented in Figures 3 and 7, no other components (in the z direction)

of the acceleration vector are involved.

Figures 3 through 7 are intended especially to provide a qualita-
tive concept of the extent to which the gravitational attraction of a
smaller revolving body M can be considered to be dominant. Toward this
end, they clearly indicate that the neutral points can well be considered
to be the limits of such dominance along the line which passes through the
two bodies of interest. For example, small masses originally at rest with
v = 0 on that line and in the absence of other forceS,‘F/m, would be
subjected to an acceleration dv/dt of Equation 11 which is: zero at the
neutral points; toward the smaller body M at all points inside the neutral
points; and away from the smaller body M at all points outside the neutral

points.

Similarly for other directions from the smaller body M, the
combined gravitational acceleration evidently must be directed more toward
than away from M if its attraction is to be considered to be dominant. As
indicated in Figures 3 through 7, this particular criterion is satisfied
throughout a very large region. As indicated in Figure 5, for example, it
is satisfied throughout virtually the entire tangential plane or cylinder

(for which x = 0 or p = a).
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Clearly, then, additional criteria must be used to define the
extent of gravispheres. For example, the Newtonian attraction of the Sun
and the centrifugal force of the Earth-Sun system balance each other
everywhere on the circle of radius r = A around the Sun. Consequently
the net acceleration is theoretically directed directly toward the center
of the Earth, irrespective of how feeble the Earth's attractive force,

~(GM/R2;§, might be anywhere on this circle around the Sun.

To find a more practical definition, it was noticed while
drawing these figures that the constant potential lines of Figures 3 and 4
tend to be parallel to the x-axis in the vicinity of a sphere of radius RG
around the smaller body. It was suggested thereby that the extremities of
a revolving body's gravisphere might well be defined to be at those positions
at which the component of the combined field of gravity in the direction
of the central body vanishes. In other words, the smaller body's influence
can be considered to be dominant wherever its presence results in a reversal
of the sense of the component of acceleration (f:;) in the direction‘? from
that which it would have had in the absence of the smaller body. As indicated
in Equation 22, that undisturbed sense (for 1/R = 0) is away from the

£ =0 or r = a sphere. A symbolic expression of this criterion is thus that

Er)/e <o (27)

for all points within or at the extremity of the small body's gravisphere,

A convenient approximate evaluation of this criterion can be
obtained from Equation 22 by neglecting the higher order K terms, by
considering the vector z to be at right angles to the vector r, and by
noting that the cosine of the angle between the vectors R and r is very
nearly equal to £/R, In that case, substituting‘f-of Equation 22 in
Equation 27 leads to the approximate criterion that

R 2
C B e ) deo
R G S
or that RSRG



The location of the limiting sphere of radius R = RG for this criterion is

indicated by the heavy circles in Figures 3 through 7.

In addition, the mass of the smaller body can be considered to
be "completely dominant' only where the field of gravitational attraction
converges toward it, or only where the constant potential surfaces are
concave toward it. As indicated in Figure 5, this criterion is evidently
satisfied throughout the tangential plane. For any plane which passes
through the x~axis with a dihedral angle ¢ from the ecliptic plane as
defined in Figure 2, the limit of this convergence occurs at those inflec-
tion points where the slopes, (dq/dx)@, of constant potential lines do not

change over an increment distance ds along them, or where

d -
P (dn/dx)@ =0 (28)

and n is defined by the equations

n2 = y2 + zz; sina = 2z/y , R2 = x2 + nz 29)

Since the change of ¢ in any direction can be expressed as

ds = (o /Ox)dx + (X [dy)dy

the slope of the direction of constant & lines, along which & = 0, are
given by
3 /0x
dn/d = - 30
(dn/ x)é 5@/571 (30)

Consequently Equation (28) can be expanded as

d (_ X/x) dx L (-a@/ax a o,
Ox 5575; ds Yl /31 /) ds

or, by carrying out the differentiations and clearing fractions, the locus

of inflection points occurs where

. 2. 2
62¢(8® 2 3% {do\do 3‘1’15‘1’) -
2 T iE \ox Bn)+3‘12 \Ox °en
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A convenient approximation of the corresponding locus of inflection
points can then be obtained by neglecting the higher order K terms and
neglecting differences between values of € and x in Equation 25, or by using

the approximate formula that

o -0 R 2 2 .2
o * G 1x 1 in @
—L2 22X 4+ 119 sin
CM/R R 232 6 g2
G G (o}
to obtain the expressions
xR 2 2
%&=._§_ > S aQ=_3XRP~|__I_{_(;._ 1
x R3 R.Z ox2 RS g3 3
G R.

2
nRg 2 2 3R R
%._..._4_7151:10:_ 9% .. 16, ¢+ sin’n

2 ’ a2 5 =3 )
R 3RG i/ R R 3RG
d2 _ 3x7R,
X'q RS

for substitution in Equation 31, The result can be arranged into the

expression
2
RS 1 3coszesin26[1 + §sinza)/3]
23 <l R 3 N 2 TN (@32
R3 3 AR3 3

for those radii, R, at which the accelerations are convergent toward the
smaller body at various angles, §, from the x-axis for which, as shown in
Figure 2, cos 6 = x/R and sing = n/R. The limiting extent of such
convergence is indicated by the dotted lines in Figures 3, 4 and 6 and
by the heavy circle in Figure 5 of the tangential plane in which cosg = 0

and hence R < RG.
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8. Conclusions

In summary, those regions of the universe in which orbital
operations can be usefully considered as being Earth-centered,
Moon-centered or Mars-centered could well be called the outermost
""pyrospheric" portions of the ''gravispheres' of the Earth, Moon, or
Mars, etc. Quantitatively, the extent of the gravisphere of any such
celestial body could apparently be well defined as being that region
in which the gravitational accelerations of the infinitesimal masses
of artificial satellites are dominated by that body's mass in the
sense that:

(1) The components of acceleration along that body's radius
vector are directed toward (rather than away from) it;

(2) The components of acceleration along the radius vector of
the larger central mass around which it revolves are in a
direction opposite to that which would exist in the absence
of the body of interest; and

(3) The two-body field of gravitational accelerations converges
(or the two-body field of gravitational potential is concave)

toward the body of interest.

Much of the probable utility of this concept of ''gravispheres'
derives from the fact that their extents are closely approximated by

spheres of radius equal to the "characteristic gravispheric radius, RG"

R, = av/ M/3M, (14)

defined by the equation

That is, for most purposes gravispheres can readily and usefully be
thought of as a sphere of that radius. In case more accurate evaluations
of the second criterion are desired, the value of RG can well serve as

a first approximation as illustrated with Equations 15 and 16. 1In those
cases in which the third or convergence criterion might be important,

the nearly spherical shape of the 'nominal gravispheres' can readily be
visualized as having been flattened by about 15 percent as indicated by

the dotted lines in Figures 3, 4 and 6.
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The concept of gravispheres and of their characteristic radii,

Rg, seem likely to prove to be especially useful in terms of the convenient

normalized form of the equations of motion with which they are associated.

That is, the '"exact" equations of motion in the form

S

£ - dv/dt + f“ x v -F/m
GM/Rg2 GM/Rg*
R Ee  za
Wrg? g 3R
2 - -
_E_\ (1+ 2K§/3RG)I_). 2p A~ 3{_§_t.x . 223
R (1 + Ke/Rg)2 €+ e -5l +KLRcr Rg
- 9_ (33
V M/Rg )
and
-0 1 (6/Rx)2  (2/Rg)?
GM/Rg ~  RIRg 2 6
JRem® et 2. © R_ﬁ_f-ff_\z] 25)
3 1+ Ke/Rg (Rs  Rg| 2 |\Rg (RG)_’

provide for especially convenient numerical computations since the
"characteristic gravispheric constant, K = RG/a =\3/M/3Mc ", is usually
much smaller than unity. Hence for many purposes all terms involving K

can be neglected and the inclusion of whatever higher order terms in K

might be needed for other purposes involves only small fractional corrections

of first order approximations obtained by setting K = O.

The most recent values of astronomical constants listed in Table I
have been used to compute the values of K = Rz/a, 1/K = a/Rg, and the size

of Ry with respect to the '"body-radii, Ro", the astronomical unit distance,

A, and meters, m, for each of the planets and the Moon listed in Table II.
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In addition, the corresponding characteristic units of acceleration, or
force per unit mass, and of potential have been computed and listed in
Table III. These tables of numerical values are meant to lend substance
to the concept of gravispheres as well as to provide for convenient

numerical use of Equations 33, 25 and 20.

The quantitative visualization and utilization of these concepts
and equations are especially convenient for the Earth-Sun and Moon-Earth
pairs of bodies. As illustrated in Figure 8 and listed in Table IV, the
geometric relationships among their body sizes, gravispheric radii and
revolving distances can be approximated exceptionally well with small,
easily remembered and used, few-digit numbers., That is, the Earth's nominal
gravispheric radius, Rges is almost exactly equal to 235 times a typical
radius of the Earth and almost exactly 1/100 of the distance from the Earth
to the Sun. Similarly, the mean revolving distance of the Moon is almost
exactly 60 3/8 times a typical radius of the Earth and 6 1/4 times the
Moon's gravispheric radius, Rgps which in turn is very nearly (60 3/8)/(6 1/4)
or 9.66 times a typical radius of the Earth. The radius of the Moon is very
nearly the easily remembered fraction, 0.273, of a typical radius of the
Earth. Finally, the characteristic accelerations GMe/RGeZ, GMﬁ/Rsz and
GMe/am2 involved in Equations 33, 25 and 20 are very closely approximated
by the values of 0.178, 1.3 and 2.7 millimeters per second per second,

respectively.

Such characteristic dimensions of the Earth's and Moon's orbits
and gravispheres canm be utilized to fullest advantage by using them to
define corresponding units of distance in much the same way that the length
of the meter was defined so that it is typical of a 1/10,000,000 part of
a quadrant of the Earth. It is thus suggested here that units of distance
be defined as in Table IV for, especially, convenient routine use in orbital
operations. With such units of distance and acceleration, for example, the
denominators of the normalized length and acceleration factors of Equations
33, 25 and 20 could be considered to be unity for all but the most precise
of purposes. The small fractional corrections required to correct such unity

approximations for those precise purposes are listed in Table V.
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Briefly, these definitions are based upon the definition of the
International Nautical Mile as being 1,852 meters (or, more fundamentally,
as being (1,852)(1,650,763.73) wave-lengths of the primary standard Kr 86
measure of length) and on the recently proposed4 "nautical rad" of exactly
3,437.75 (or very nearly the 21,600 minutes of arc per circumference
divided by 2x) nautical miles. It is expected that the ''characteristic
gees" of 0.178, 1.3 and 1.7 mm/s2 will be found to serve the same kind
of useful purpose for gravispheric operations that the "standard gravity,

8o = 9.80665 n/s2" now serves operations on the surface of the Earth.

The symbols and names of the units listed in Table IV and used
in Table V are suggested here only tentatively; the selection of appropriate
symbols and names for such units has been found to be the most difficult
part of the definition of such new units. For example, names such as
"geosec, geomin, geodeg, geoquad and geocirc' now seem preferable to the
recently suggested4 "nautical’ units with corresponding suffixes. Especially,
it now seems better to identify the typical radius of the Earth with the
name '"'georadius'" and the symbol, gR, than with the name 'nautical rad'".
In this regard, the convention has been tentatively introduced here to use
small letter prefixes such as "g'" and "1" to denote the visible, solid or
lithospheric, aspects of the ''geo" Earth and the "luna" Moon, and to use
corresponding capital letters such as '"G" and "L'" to denote the all-inclusive
gravispheric (or Geospheric and Lunaspheric) aspects of the operational

regions associated with those bodies.

it is important to recognize the fact that the
astronomical constants evaluated in Table V are themselves more 'standard
average values" than the value of any specific distance or acceleration
which might exist and be of interest at any specific time for some specific
purpose. The sizes of the suggested units of length and acceleration thus
seem likely to be as typically representative of any such specific value

as any other one standard value might be.
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It is thus expected and hoped that these simple defining numbers
will be found to be conveniently useful for both

(1) routine orbital operations in which differences between these
typical unit values and individual values will frequently be
negligible, and

(2) scientific determinations of more precise average and specific
values of related astronomical constants based on non-redundant
computations in terms of small-difference corrections of these

simply defined and conceived, or '"ideal', unit values.
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TABLE I
ASTRONOMICAL CONSTANTS

Sources: 1. "Explanatory Supplement to the Astronomical Ephemeris and the
American Ephemeris and Nautical Almanac' Nautical Almanac
Offices of the United Kingdom and the United States of America,
London, 1961

2. "Report to the Executive Committee of the Working Group on the
System of Astronomical Constants' International Astronomical
Union, 28 February 1964

Revolving Body
M _ Mass of Sun (or Earth)
Mc Mass of Planet (or Moon)
a _ Mean Revolving Distance
A Astronomical Unit
Mercury 6,000,000 0.387 099 3.34 22,
Venus 408,000 0.723 332 8.41 325.
Earth 332,958 1.000 000 8.794 05 398,603
Mars 3,093,500 1.523 691 4,68 42.902
Jupiter 1,047.355 5.202 803 98.47 126,717.3
Saturn 3,501.6 9.538 843 83.33 37,902
Uranus 22,869 19.181 951 34.28 5,803.4
Neptune 19,314 30.057 779 36.56 6,871.6
Pluto 360,000 39.438 71 ¢ 10 ? 370.
Moon 81.30 0.002 569 52 2.396 3 4,903
SD = Equatorial Semi-Diameter,
Seconds of Arc at Unit Distance, A.
Gravitational Comstant, GM: 1012m3/82

Astronomical Unit of Distance, A =

Equatorial Radius of Earth,

Perturbed Mean Distance of the Moon

R
oe

"

149,600 x 106 meters

' 6,378,160 meters

= 384,400 x 10° meters

Semi-Diameter of the Moon at Mean Distance = 15'32.6"
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TABLE 11

PROPORTIONS OF GRAVISPHERES

Revolving Body

!
K = Rc/a =3 M/3Mc _ {(Nominal) Radius of Gravisphere

Mean Revolving Distance

_ = 3/aw 7w = _Mean Revolving Distance
/R = a/Rg M /M (Nominal) Radius of Gravisphere

Mercury‘ 0.003 8 260 91 0.001 5 2,2

Venus 0.009 35 107.0 165.8 0.006 76 10.12
Earth 0.010 003 73| 99.962 5 234.638 5 {0.010 003 73 14.965 62
Mars 0.004 758 55§ 210.147 320 0.007 250 6 10.846 9
Jupiter| 0.068 274 98| 14.646 65 744.08 0.355 221 3 531.411 0
Saturn { 0.045 660 1 21.900 9 | 1,078.1 0.435 545 651.57
Uranus }| 0.024 427 4 40.938 2,819 0.468 56 700.97
Neptune} 0.025 842 6 38.696 4,382 0.776 77 1,162.05
Pluto 0.009 7 102 8,000 ? 0.38 575

Moon 0.160 05 6.247 9 35.399 0.000 411 26 0.615 24

/R = (Nominal) Radius of Gravisphere
Re/Ro Equatorial Radius of (Solid) Body

/A = (Nominal) Radius of Gravisphere
RG Astronomical Unit Distance

- (Nominal) Radius of Gravisphere
100,000,000 meters

Rg/10%m

TABLE III1

GRAVITATIONAL CONSTANTS

Potential Acceleration
2 2 2
Revolving GM./a GM/Rg GM./a GM/Rg GM/R,,
Body 106m2/s2 103m.2/s2 10~ 6m/s2 10~ 6m/s2 m/ s2
Mercury {{2,291.8 100 39,575.1 450 3.8
Venus 1,226.48 322 11,334.2 318 8.74
Earth £87.152 266.346 5,930.16 177.972 9.798 3
Mars 582.239 39.553 2,554.30 36.465 3.724
Jupiter | 170.514 4 2,384.55 219.075 44,872 0 24,844
Saturn 96.939 9 581.70 65.174 2 8.927 6 10.376
Uranus 46.249 3 82.791 16.116 9 1.181 1 9.388
Neptune 29.514 9 59.134 6.563 76 0.508 87 9.773
Pluto 22.494 5 6.4 3.812 60 0.111 7?
Moon 1.036 95 79.69 2,697.58 1,295.3 1.623 1
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TABLE IV

SUGGESTED
GEOSPHERIC AND LUNASPHERIC UNITS OF DISTANCE AND ACCELERATION

gR or "georadius" = 3,437.75 "geomins" or nautical miles, gM,
corresponding to 21,000/2x nautical miles

3,437.75 (1,852) or 6,366,713 meters, m.

GR or '"geospheric radius" = 235 georadii, gR

235 (6,366,713) or 1,496,177,555 meters, m.

Gd or "geodistance" = 100 geospheric radii, GR
23,500 georadii, gR

149,617,755,500 meters, m.

IR or "lunaradius'" = 0,273 georadii, gR

0.273 (6,365,713) or 1,738,122.649 meters, m.

LR or '"lunaspheric radius'' = 9.66 georadii, gR
9.66 (6,366,713) or 61,502,447.58 meters, m.

9.66/0.273 or 46/1.3 or 35.384 61°°*lunaradii, IR.

Ld or "lunadistance" = 60.375 or 60 3/8 georadii, gR
60.375 (6,366,713) or 384,390,297.375 meters, m
6.25 lunaspheric radii, LR

575/2.6 or 221.153 8--lunaradii, 1R

oo

0.000 178 meters/(ephemeris second)z, m/es? 9 ‘
0.000 888 105--(geospheric radii)/(ephemeris day)“,GR/ed"
rv Keplerian period, 2n//Gg/GR, of 211.319 ed

Gg or ''geospheric gee"

0.001 3 meters/(ephemeris second)?, m/es?
0.157 790--(lunaspheric radii)/(ephemeris day)z, LR/ed?

Lg or "lunaspheric gee" =
~ Keplerian period, 2n</Lg7GR, of 15.817 2 ed

Ldg or "lunar distance gee" = 0.002 7 meters/(ephemeris second)z, m/gs2 .,
= 0,052 434 7-+(lunar distances)/(ephemeris day)4, Ld/ed“
nJ

Keplerian period, 2x{/Ldg/Ld, of 27.438 5--ed.
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TABLE V
GEOSPHERIC AND LUNASPHERIC VALUES OF ASTRONOMICAL CONSTANTS
Source: ''Report to the Executive Committee of the Working Group on the

System of Astronomical Constants' International Astronomical
Union, 28 February 1964

6,378,160(1 + 0.000 013)m
= 1(1 + 0,001 883 + 0.000 013)gR

Equatorial Radius of the Earth, R,

1.496 562(1 + 0.000 021)10°m
1¢1 + 0.000 256 + 0.000 021)GR

Gravispheric Radius of the Earth, Rse

1.496 00(1 + 0.000 013)1011m
1¢1 - 0.000 118 + 0.000 013)Gd

Astronomical Unit, A

Radius of the Moon, Rgy = 1.738 02(1 + 0.000 1)10%m
= 1(1 - 0.000 05 + 0.000 10)IR

6.152 42(1 + 0.000 04)107m
1(1L + 0.000 35 + 0.000 04)LR

Gravispheric Radius of the Moon, Rgp

384,400(1 + 0.000 003)m
1(1 + 0.000 026 + 0.000 003)Ld

Perturbed Mean Distance of Moon, a

1.779 718(1 + 0.000 043)10" “m/s2
1(1 - 0.000 164 + 0.000 043)Gg

Geospheric Constant of Acceleration, GE/R&i

Lunaspheric Constant of Acceleration, GMm/Ré; = 1.295 263(1 + 0.000 042)10'3n1/32
= 1(1 - 0.003 644 + 0.000 042)'1g

2.697 576(1 + 0.000 009)10" 3m /g2
1(1 - 0.000 898 + 0.000 009)Ldg

Earth Acceleration at Lunar Distance, GE/am2
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